If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-11x-59=0
a = 1; b = -11; c = -59;
Δ = b2-4ac
Δ = -112-4·1·(-59)
Δ = 357
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{357}}{2*1}=\frac{11-\sqrt{357}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{357}}{2*1}=\frac{11+\sqrt{357}}{2} $
| x^+21x+20=0 | | 7×4u=70-3 | | 3(x+60=4(x+5) | | (3x-5)/2=0,25(2x-10)+x | | x÷3-3=1.8 | | (x-3)/4=(x-5)/2 | | 11y-2=10y-4 | | (2x+3)/(3x+2)=9/7 | | 4/9=x3/6 | | -1+3x=-3+26x | | 2x+7=22+6 | | -16+4x=-22+11x | | (x+4)^2=x(x+4) | | 4x+7=14-7x | | 1+3=-11+x | | 5x+x-6x+2x=2x | | 2x*100=6x-24 | | 2n-7n-13=-10 | | 3+5i=0 | | 3+5j=0 | | 4(x+1)-3(x-5)=-13-3x | | 6+n=40 | | 6t2-25t-9=0 | | Q=15+2p | | 9x²=72 | | 3y+15=19 | | 14x-35=27x-72 | | 7(x-4)=5(x | | X2+5x-34=0 | | 20(4^x)=30(2^x) | | (x=3)/7=3 | | (x-5)/6=1 |